stable exponentially harmonic maps between finsler manifolds
Authors
abstract
similar resources
Harmonic Maps on Kenmotsu Manifolds
We study in this paper harmonic maps and harmonic morphisms on Kenmotsu manifolds. We also give some results on the spectral theory of a harmonic map for which the target manifold is a Kenmotsu manifold.
full textON f -BI-HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS
A. Both bi-harmonic map and f -harmonic map have nice physical motivation and applications. In this paper, by combination of these two harmonic maps, we introduce and study f -bi-harmonic maps as the critical points of the f -bi-energy functional 1 2 ∫ M f |τ(φ)| dvg. This class of maps generalizes both concepts of harmonic maps and biharmonic maps. We first derive the f -biharmonic map ...
full textSome Classifications of ∞-harmonic Maps between Riemannian Manifolds
∞-Harmonic maps are a generalization of ∞-harmonic functions. They can be viewed as the limiting cases of p-harmonic maps as p goes to infinity. In this paper, we give complete classifications of linear and quadratic ∞harmonic maps from and into a sphere, quadratic ∞-harmonic maps between Euclidean spaces. We describe all linear and quadratic ∞-harmonic maps between Nil and Euclidean spaces, be...
full textOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
full textQuasiconformal Harmonic Maps into Negatively Curved Manifolds
Let F : M → N be a harmonic map between complete Riemannian manifolds. Assume that N is simply connected with sectional curvature bounded between two negative constants. If F is a quasiconformal harmonic diffeomorphism, then M supports an infinite dimensional space of bounded harmonic functions. On the other hand, if M supports no non-constant bounded harmonic functions, then any harmonic map o...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 36
issue No. 2 2011
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023